BDNF اثر فعالیت هوایی بر شاخص‌های خطر متابولیک و
در مردان میان سال

ارسلان دمیرچی، پرورن پایانی، کریم آذالی عضوی

1- دانشگاه گیلان
2- استادیار دانشگاه علوم پزشکی گیلان
3- استادیار دانشگاه شهید مدنی آذربایجان

نشانی نویسنده: کیلومتر 35 جاده تبریز- مراغه، دانشگاه شهید مدنی آذربایجان، دانشکده علوم تربیتی و روانشناسی، دکتر کریم آذالی عضوی
E-mail: azalof@yahoo.com

وصول: 99/7/15
پذیرش: 99/8/3
صلاح: 3

چکیده

مقدمه و هدف: عامل رشد عصب مشتاق شده از مغز (BDNF) عبارا بر فضای نروتروفیک. دارای آثار متابولیک و بیش از این مطالعه تاثیر تمرین هوایی بر شاخص‌های خطر متابولیک و بیماری روحی روش‌شناسی: 24 مرد میانسال داوطلب دارای سندرم متابولیک به طور تصادفی در دو گروه شامل تمرين (ME) و کنترل (MC) تقسیم شدند. ابتدا مقادیر متوسط مرغوب قلد، چربی، پروتئین و کالری روزی که در زمان قبل از شروع تحقیق استخراج شدند. گروه در نهایت تست هوایی با شدت متوسط کردن و در پی آب و پاپان دوره تمرین خون‌گیری انجام شد. مقایسه معنی‌داری داده‌ها در پیش آزمون با استفاده از آزمون Mann-Whitney جنگلیس چند متغیره (برای کنترل تاثیر تفاوت‌های تعیین‌گری اولیه) و مقایسه برنده به روش تی تک‌طرفی در طول زمان با آزمون های کووکار و تی هینیت انجام شد.

یافته‌ها: تمرین هوایی سبب کاهش امید Z کل سندرم متابولیک (P<0.001) و HDL (P<0.01). حساسیت به اسولین BDNF (P<0.01) و پای سرم (P<0.08). شرط خون مانیاگان سرخرگی (P<0.04) و تری‌گلیسرید (P<0.01). قند خون ناشتانا (P<0.01) و تری‌گلیسرید (P<0.01). قند خون ناشتانا (P<0.01) و تری‌گلیسرید (P<0.01).

تمرین هوایی همچنین باعث افزایش لیپورپونین پرچکال (P<0.01) و این حال به تغییرات در مقدار اسولین و جوید نداشت (P>0.05).

بحث و نتیجه‌گیری: تمرین هوایی در افراد سندرم متابولیک دارای قواعد چند جانبه ای است. ولی در این افراد پاسخ BDNF به برنامه تمرین مشابه آزمودنی های سالم هم نبود. نتایج آزمون‌های ثابت کرد که بیش از 60 سانتی‌متر در کنار کردن سندرم متابولیک در فرد شناخته می‌شود (دور کم).

واژه‌های کلیدی: سندرم متابولیک، BDNF، تمرین هوایی

مقدمه

صدای هوایی به عنوان حضور سه تا پنج دسی‌لیتر فشار خون پیش از 130/85 میلی‌متری‌ژو و گلولک خون ناشته‌ای بالاتر از 110 میلی‌گرم‌در‌سی‌سی‌لیتر که امروزه شیوع آن به روند کاهش‌دار مواجه شده است (1).

می‌توان به میلی‌گرم بر دسی‌لیتر، فشار خون پیش از 130/85 میلی‌متری‌ژو و گلولک خون ناشته‌ای بالاتر از 110 میلی‌گرم‌در‌سی‌سی‌لیتر که امروزه شیوع آن به روند کاهش‌دار مواجه شده است (1).

ورزش و علوم زیست حکمرانه 13، شماره 2، سال 1390، پاییز و زمستان 1390

سال سوم شماره 2/پاییز و زمستان 1390 (51)
کنترل منابعی به توانایی تولید یون درون‌داده‌های تنظیمی مزکی و مقدار سیگنال‌های محرکی بستگی دارد. نشان داده شده است که عامل رشد عصبی مشتق‌شده از مغز (BDNF) نتش تغییر می‌دهد در این مجموعه دارد و تغییر در سیگنال‌دهی آن می‌تواند به عنوان یک تعیین کننده معنی‌بردار سندروم منابعی باشد (2).

یکی از عوامل مهم عملی است (3) که BDNF بیش از 77% در پلاکت‌ها ذخیره می‌شود (4) و در کنترل یون درون‌داده‌های سیندرام همچنین BDNF می‌تواند تأثیری در کاهش توانایی کاهش قوی داشته باشد. دانش در این زمینه نشان داده شده است که حداقل سطوح سیر BDNF در افراد سیگنال مثالی می‌باشد.

روش‌شناسی
در آغاز تحقیق، تعداد 42 مورد میان‌سال دایریکس شهر رشت از لحاظ سلامت عمومی و اثربخشی به شرکت دادند. همچنین آزمایشات خونی و فیزیولوژیکی به عمل آمده که در پایان تعداد 28 نفر بیمار دایریکس سندروم منابعی (بر اساس ATPIII معیار) از آنها پس از پرینترمنه به بهره‌وری و سطح فعالیت بدنی و سایر میزان‌ها و اخذ رضایت نامه به عنوان آزمودنی انتخاب شدند. پس از تایید پروتکل در کمیته اخلاقی دانشگاه علوم پزشکی گلستان، بیمارانی از آزمون‌ها در جدول 1 آمده است. همچنین از آزمون‌ها در طی یک سال گذشته، سابقه شرکت در فعالیت بدنی منظم نداشتند. بررسی از آنها در حالت استفاده از تعدادی ترکیبات دارویی شامل هم‌کارانه‌های کندنیه با 20 نفر،
امام‌آزموده‌ها در دو مرحله شامل پیش از آزمون و پس از شهش هفته تمرین، خون‌گیری (به‌صورت ناشتا در ساعت 9 صبح) به عمل آمده (برای اندازه‌گیری سطوح گلپژک، BDNF و همچنین فشار خون و دو کمی اندیس‌گیری شدند. در هر بار خون‌گیری، بخش از نمونه‌های خونی سایه‌گر بازونی (EDTA سی‌سی) در تبویض‌های حاصل زبده‌شده‌اند از انعقاد جمع‌آوری شدند و پس از سانتریفیوژ (۱۲ دقیقه) به دور ۳۰۰۰ در هر دقیقه) و جداسازی پلاسمای گلپژک خون به روش گلپژک اکسیداز و نیتروم چربی به روش استاندارد اندیس‌گیری شد. بخش دیگری از نمونه‌های خونی (۴ سی‌سی) در تبویض‌های ویژه سردشده® Vacutainer® SST II Advance) جمع‌آوری شدند و چک ساخت در دمای عملی تا لخته شدن باقی مانندند و در ادامه شماره از سانتریفیوژ (۱۲ دقیقه) به دور ۳۰۰۰ در هر دقیقه) سرم به دست آمده در دمای ۴۰-۷۰ درجه سیلسیوس متجه شد (R&D مقدار BDNF و انسولین سرم به بهترین BDNF and Insulin ELISA kit, USA) مضاعف اندازه‌گیری شد (۱۰۰). همچنین امیاژ Z کل سندرم متابولیک با استفاده از معادله‌زی (۱۱):
پایبندی به شرکت در تمرینات برای باور با/\(/8016\) شاخص‌های خطر منابع‌کریک در در مراحل، از آزمون Q کوکران و در مورد سایر منابع‌های آزمون تی همینه استفاده شد. در تمام آزمون‌ها، سطح معنا دریا آماری برای 0/05/0/0007

یافته‌ها

آزمودنی‌های گروه تمرین در طول 18 جلسه تمرین، مقدار 0/04/1/1393 کیلوگرم را دو دیده و

جدول ۱: ویژگی‌های آزمودنی‌ها و مقدار معنی‌دار مورد اندازه‌گیری از ابتدا تا پایان ۳۱۳۰-

| نام | ترکیب | گروه | کنترل | ماژور | رابطه | نتیجه | ترکیب | گروه | کنترل | ماژور | رابطه | نتیجه |
|-----|-------|------|--------|-------|-------|--------|-------|------|--------|-------|-------|--------|-------|

(۱) تفاوت معنی‌دار بین گروه‌های ۰/۰۰۰۷ (پ)
جدول 2: تعداد افراد دارای ناشی خطر منابولیک در طول تحقیق

<table>
<thead>
<tr>
<th>فاکتور</th>
<th>Familie</th>
<th>ME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>بیش آزومون</td>
<td>پس از تمرین</td>
</tr>
<tr>
<td>تعداد کل شامل‌های خطر</td>
<td>64</td>
<td>19</td>
</tr>
<tr>
<td>تعداد افراد دارای یک شامل‌های خطر</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>تعداد افراد دارای دو شامل‌های خطر</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>تعداد افراد دارای سه شامل‌های خطر</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>تعداد افراد دارای چهار شامل‌های خطر</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>تعداد افراد دارای پنج شامل‌های خطر</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>تعداد افراد دارای یک منابولیک</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>تعداد افراد دارای دو منابولیک</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>تعداد افراد دارای سه منابولیک</td>
<td>40</td>
<td>28</td>
</tr>
<tr>
<td>تعداد افراد دارای چهار منابولیک</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>تعداد افراد دارای 5 منابولیک</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

بخش و نتیجه گیری

پیوسته تمرین مورد استفاده در تحقیق حاضر، سبب ایجاد سازگاری هنیزی از لحاظ شامل‌های خطر منابولیک (دور کمر، قند و چربی‌های خون) شد که در تحقیقات گذشته نیز به خوبی ثابت شده است (11، 9). در بخش دیگری از یافته‌ها، تاثیر مثبت تمرین منابولیک بر کاهش تعداد شامل‌های خطر منابولیک (بر مبنای معیار ATPIII) نشان داده شد. در این باره به نظر می‌رسد که احتمالاً تغییر تعداد شامل‌های منابولیک به تنهایی اطلاعات کاملی از وضعیت سندروم منابولیک ارائه می‌نماید. به یکدیگر احتمال دارد که با وجود تغییر معنی‌دار مقدار هر کدام از شامل‌های خطر منابولیک در پاسخ به برنامه تمرین، هنوز مقدار عادی پارامترهای خطر به محدوده طبیعی ترسد (مثل: کاهش سطح تری‌گلیسرید خون از 250 به 154 گرم بر دسی لیتر و نیتراتین در زمان مقایسه تعداد شامل‌های خطر بر حسب دستور العمل‌های موجود برای تعیین وضعیت سندروم منابولیک و غیره). تفاوت معنی‌داری در تعداد شامل‌های خطر منابولیک مشاهده شد. این نتیجه بر
طرح یکسان اتفاق نیافت. همچنین گزارش شده است که کاربرد ملاک ATPIII در جمعیت‌های آسیایی سبب کم‌برآوری تعداد افراد در معرض خطر می‌شود و با استفاده از ارزش عددی بحثی بایستی برای بررسی از شاخص‌های خطر متابولیک استفاده شود. در مطالعه‌ها و بررسی‌های جهانی‌ای که احتمالاً در مورد برخی از آزمودنی‌ها که دارای فوت باشند جهت یک سمت از این پویش خطر فوتی در مطالعه‌های قراردادی موجود باید تبعیض و ضعیف‌سازی متغیرهای مورد بررسی باشد. نتایج بالا، ممکن است به عنوان آرای فعالیت برای یک چنین بازاریک در تمام آزمودنی‌ها به آفرینی بدنی برای یک شاخص‌های خطر متابولیک در تمام آزمودنی‌ها به‌شمار بیاید

![نمودار 1: نمودار مسطح BDNF کروه‌ها در طول تحقیق](image1)

شکل 1: نمودار مسطح BDNF کروه‌ها در طول تحقیق

![نمودار 2: نمودار امتیاز Z متابولیک کروه‌ها در طول تحقیق](image2)

شکل 2: نمودار امتیاز Z متابولیک کروه‌ها در طول تحقیق
ارفاد بان وضعیت پاتولوژیک را فراهم می‌کند (11). بنابراین، در این تحقیق نیز امتیاز 2 کل سندروم منابولیک به عنوان یک شاخص کمی برای ارزیابی تغییرات شدت و خاطم در گروه‌های آزمونی به مجموعه شاخص‌های خطر منابولیک محسوب شد.

کاهش امتیاز 2 سندروم منابولیک در این تحقیق، بانگک کارابای بوکلن تمامی مورد استفاده در بهبود کلی وضعیت سلامتی آزمونی‌ها بود. این اثبات، امتیاز 2 سندروم منابولیک به عنوان یک متغیر پیشنهاد داده به تغییرات کوچک‌های کام از شاخص‌های خطر منابولیک در حول و هوش آستانه، حسیست کمی دارد (مثلاً کاهش سطح تری‌کلسید خون از 152 به 149 میلی‌گرم به میلی‌لیتر، باعث کاهش شاخص خطر سندروم منابولیک از لحاظ مالکه می‌شود، ولی تأثیر چشمگیری بر ATPIII می‌شود، ولی تأثیر چشمگیری بر ATPIII امتیاز 2 سندروم منابولیک اعمال نمی‌گردد. بنابراین تأثیر برای این تحقیقات در بهبود ملاک‌های تغییری تغییری نیست (10).

تأثیر تعیین نتیجه در کاهش سندروم منابولیک ضروری دارد. در این تحقیق با وجود کاهش مقدار قند خون ناشی و جسیسیت به انسلین، تمرین هویزی نتیجه معنی‌داری بر سطح انسلین پایه نداشت. با در نظر گرفتن اینکه در برخی تحقیقات گذشته ارث عدید سیستمی به انسلین بخشی از (برای مثال HOMA-IR) ملاک تغییری مقابل به انسلین شاخصه شده است (13). بنابراین آزمونی‌های ما در این تحقیق مقابل به انسلین داشتند (84/7، 4/3 و 128/47). هرچند برای آزمونی‌های کنترل و تمرین، به‌طور مشابه، کاهش معنی‌دار حساسیت به انسلین و کاهش حساسیت با انسلین می‌تواند به‌طور گسترده و در افزایش کارایی انسلین باشد که در تحقیقات گذشته بارها مشاهده شده است (11).

نحوه داده شده است که سطح BDNF پلاسمای با گذشت سن در هر دوی زنان و مردان کاهش می‌یابد (15). ولی این نتیجه توسط تمام محققان تایید نشده است:

سال سوم/شماره 8/پاییز و زمستان (1390) (57) ورزش و علوم زیست حکمی
آزمودنی های سندرم متابولیک دچار کاهش شده است (4).

یک دلیل دیگر کاهش سطوح BDNF در پاسخ به برنامه تمایل مربوط به عدم نیاز به آن است. برخی تحقیقات نشان داده‌اند که به عنوان یک عامل کاهش است، بر دریافت غذا و کنترل وزن بدن تاثیر می‌گذارد (۲۹). به علاوه، در بهبود متابولیسم کلدرک و چربی ها نقش دارد و سبب افزایش هزینه انرژی می‌شود (۳۰). همچنین در بیماران نازه تشخیص داده شده دیابت نوع دو ارتباط مثبت بین BDNF و میزان چربی زیرجلدی و متابولیسم قد و چربی گردار نشده است و احتمال دارد که در بیماران چاق برای بهبود متابولیسم چربی و قد و کاهش دریافت انرژی، افزایش یابد (۳۱). همچنین گزارش شده است که به عنوان یک واکنش جریانی در مراحل ابتدایی سندرم متابولیک نیز افزایش می‌یابد (۲). با این حال، با کاهش میزان چربی بدن، بهبود متابولیسم قد و چربی و افزایش هزینه انرژی در پاسخ به تمایل هوازی، کاهش نیاز بدن آزمودنی های گروه تمایل به BDNF کاملاً BDNF طبیعی به نظر می‌رسد. یک دلیل دیگر کاهش BDNF سرم ممکن است مربوط به اثرات جانی مصرف برخی

References

Effects of aerobic training on metabolic risk factors and BDNF in midlife males

Damirchi A¹, Babaei P¹, Azali Alamdari K²

1. Guilan University
2. Azarbayjan Shahid Madani University

Received: 06/10/2012 Revised: 24/10/2012 Accepted: 26/11/2012

Abstract

Introduction and Purpose: Brain derived neurotrophic factor (BDNF) can affect metabolic processes in addition to its neurotrophic effects. We investigated the effects of aerobic training on metabolic risk factors and BDNF.

Materials and methods: 21 middle-aged volunteers with metabolic syndrome were divided randomly into exercise (ME) and control (MC) groups. The nutritional logs (carbohydrate, lipid, protein content and total daily caloric intake) during three weeks prior to the study initiation, were recorded. The ME subjects participated in aerobic training program (6 weeks) with moderate intensity and blood samples were taken at two occasions including baseline and end of training period. Between group comparisons were made using independent samples t test and multivariate ANCOVA (in order to control the effect of between group nutritional differences at baseline), while within group differences explored by ANOVA for repeated measurements and Cochran's test of Q.

Results: aerobic training decreased overall MetS Z score (P=0.001), BDNF (P=0.004), insulin sensitivity (P=0.038), mean atrial blood pressure (P=0.024), waist circumference (P=0.002), fasting blood sugar (P=0.018) and triglyceride (P=0.001) and also increased high density lipoproteine (P=0.003). However, non-significant response observed about insulin (P<0.05).

Discussion and conclusion: Aerobic training has various benefits for MetS. However, it seems for metabolic syndrome that the serum BDNF is not a marker of health as typically assumed for healthy population.

Keywords: Metabolic Syndrome, BDNF, aerobic Training

Correspondence: Karim Azali Alamdari, Faculty of Education&Psychology, Azarbayjan Shahid Madani University, Tabriz, Iran, Email: azalof@yahoo.com