تأثير تمرینات استقامتی کم شدت و پرشدت بر سطوح لپئین، کورتیزول، تستوسترون، هورمون رشد و شاخص مقاومت انسولین در جووانان چاق کم تحرک

رحمان سوری ۱، نجمه رضاییان ۲، امید صالحیان ۳

۱- استادیار دانشگاه تهران
۲- دانشجوی دکتری فیزیولوژی ورزشی دانشگاه تهران
۳- کارشناس ارشد فیزیولوژی ورزشی دانشگاه تهران

نشانی نویسنده: مسلول تهران- امیرآباد شمالی- دانشگه تربیت بدنی دانشگاه تهران- دکتر رحمان سوری
E-mail: soori@ut.ac.ir

وصول: ۹۰/۱۱/۱۵
اصلاح: ۹۰/۱۲/۲
پذیرش: ۹۱/۱۳/۹

چکیده

مقدمه و هدف: ورزش و فعالیت به دنبال تأثیر هورمون‌ها یک کنترل دهنده هموستات آنژیوپاتی و متابولیسم، در تغذیه صافی و اختلالات همراه با آن توأم می‌شود. پژوهش حاضر تأثیر تمرینات استقامتی کم شدت و شدید را بر سطوح سرمی لپئین، کورتیزول، تستوسترون، هورمون رشد و شاخص مقاومت انسولین (HOMA-IR) در مردان چاق کم تحرک مورد مطالعه قرار داده است.

روش‌شناسی: ۷۲ مرد چاق کم تحرک (شاخص توده بدنی ۳۱/۶۸۲) به علت تغذیه در درگاه و گروه تراکمی و یک گروه کنترل در ۱۶ هفته برنامه تمرینات استقامتی کم شدت (۴۵-۴۰ دقیقه تمرین قلبی، در حالی که سطح حرکت بینال (۸۵-۷۸) درصد ضربان قلبی طبیعی، سه هفته به هر یک دیق‌تر کردند). سطح سرمی لپئین، کورتیزول، تستوسترون، هورمون رشد و انسولین و شاخص‌های HOMA پیشین و بعدی ساعت匹س از آخرین جلسه تمرین انجام شدند. تجزیه و تحلیل داده‌ها با آزمون آنالیز واریانس پکس فویه، تی‌جودو و آزمون همبستگی پیرسون در سطح معنی‌داری ۰/۰۵ پذیرفته شد.

یافته‌ها: اجرای تمرینات استقامتی کم شدت ضمن کاهش معنی‌دار در سطوح سرمی لپئین (P<0/00۰۰)، و شاخص‌های HOMA-IR نظیر وزن، درصد چربی بدن و شاخص توده بدنی (P<0/0۱۰۰)، افزایش معنی‌دار تستوسترون سرم (P<0/۰۴۷)، معنی‌دار در UF. و بیشتر شاخص‌های هورمون‌های آنزیم‌ها (P<0/0۰۵)، HOMA-IR و و کورتیزول بین افزایش معنی‌دار هورمون تیروئید (P<0/0۰۵) ضمیم. رابطه معنی‌دار بین تغییرات سطوح سرمی لپئین با عده‌شای کاهش یافته‌هایی در شاخص‌های HOMA-IR و کورتیزول.

بحث و نتیجه‌گیری: تمرینات استقامتی کم شدت در مقایسه با تمرینات شدید در جووانان چاق کم تحرک اثرات می‌تواند تغییرات در سطوح سرمی کورتیزول، تستوسترون، هورمون رشد و شاخص مقاومت انسولین را در مردان چاق، موتوریست ایجاد کند.

واژه‌های کلیدی: تمرینات استقامتی، لپئین، کورتیزول، تستوسترون، هورمون رشد، مردان چاق
منتهیات هورمون‌های متوث بر متابولیسم

مقدمه

بافت چربی به عنوان یک ارگان فعال اندازه‌گیری می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

رشد، ب‌طور شبیه به عکس یک ارگان فعال اندازه‌گیری می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.

تغییرات در هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود. تحقیقات نشان‌دهنده می‌باشد که از تاثیر هورمون‌های جنسی، به طور کلی، بر هورمون‌های مترکیست که باعث تغییراتی در سطح فشار کلی و بافت چربی می‌شود.
روش شناسی

پژوهش حاضر از نوع توسع‌های با روی‌نیمه تجاربی بوده که با هدف کلی بررسی تاثیر اجزای ۶۰ هفته تمرین استقامتی کم شدت و پر‌شدت بر سطح‌های لیپیدی، کوتوزیول، تستوسترون، هورمون رشد و چاقی مفاکت اولویت در جوانان ناپایدار طراحی و به اجرای گذاشته شد.

عوامل خطرزا در بررسی این زمینه‌ها قلبی و مشماری‌کننده و اهمیت تعبیه شدت تمرینی مناسب جهت تعلیق نیازهای هورمون‌های مولتی در تنظیم وزن و مشماری‌کننده، به‌هدف تاثیر تمرینات استقامتی کم شدت و پر‌شدت بر سطح سرمی لپیدی، کوتوزیول، تستوسترون، هورمون رشد و شاخص مقاومت انقلاب، در جوانان ناپایدار طراحی و به اجرای گذاشته شد.

کوتوزیول و هورمون رشد از پروتکل تمرینی نیز تاثیری اکتکان‌پذیر دارند (۱۴)؛ به‌طور که تغییرات غله‌های تمرینی در این درجه از ۶۰ درصد حداقل اکسپان مصرفی گزارش شده است (۱۵). ضمن اینکه آستانه شدت موردنیاز در بهبود حساسیت انقلابی در سطوحدهای سال ۸۷ درصد ضربان قلب ذخیره توصیه شده است (۱۳). میست و همکاران (۳) نشان دادند اجرای سه هفته تمرینات و فیزیکالی کاهش سطح لپید و افزایش تستوسترون و هورمون رشد همراه به‌وجود است. یک کاشح حجم تمرینات، سطح لپیدین افزایش و سطح سرمی تستوسترون و هورمون رشد به مقادیر پایین ثبت یافته (۱۶). اگرچه این نتایج اکسپان در سال ۹۸ درصد تفاوت مشاهده نشده‌اند (۵۷)، نتایج این تحقیق نشان داده است که افزایش مقاومت با سه هفته تمرینهای استقامتی در قاپرشن نخی گزارش کردن کاهش سطح لپیدی به شدت تمرین وابسته است (۷۱)؛ یک سال و همکاران (۶۸)، مشاهده کردن تفاوت معنی‌داری در سطح لپیدین پس از اجرای تمرینات استقامتی در دو شدت ۶۰ و ۸۵ درصد اکسپان مصرفی پیشنهاد و جدایاند (۸۱).

با توجه به تحقیقات انجام شده، تاکنون تحقیق واحدهای در زمینه بررسی تاثیر شدت تمرینات استقامتی بر سطح ویژه کتورزویل، تستوسترون، هورمون رشد و مقاومت انقلابی در مردان جوان چاق و غیرفعال صورت گرفته است. بنابراین با توجه به نقش چاقی بیوزه در دوران نوجوانی و جوانی در وقوع بیماری‌ها و اختلالات
پرداخته و گروه کنترل نیز بدون مداخله به فعالیت‌های روزانه خود ادامه داد. آزمودنی‌ها در دو گروه تجربی در
۱۶ هفته بر روی نرم‌افزار تست می‌پرداشتند. تیم‌های شینین، یک
ثبت ۴۴۵ درصد ضربان قلب ذخیره و استقامتی
این ۸۰ درصد ضربان قلب
ذخیره، به جمله دو هفته به مدت ۵۰–۶۰ دقیقه شکرید. شدت نرم‌افزار با استفاده از ضربان
سنج پال ساخته‌ای می‌شد. در هر جمله تمرینی تقریباً
۱۰ دقیقه گرم کرد (شامل ۴ دقیقه دویدن آرام و ۲ دقیقه
گرم کننده فعالیت و اجرای حرکات کششی به مدت ۴
دقیقه) و ۵ دقیقه زمان برای سرد کردن در نظر گرفته شد.
به آزمودنی‌ها توصیه شد در طول ۱۰۰ هفته اجرای برنامه
تمرينی از شکرید در هر جوله فعالیت ورزشی سازمان
یافته دیگر، خود روز روز افزایش دارد.

قبل از اغاز اجرای برنامه تمرینی، ارزیابی‌های
اولیه نظیر ضربان قلب بیشینه و ضربان قلب ذخیره جهت
تعیین شدت تمرین و اندارد کننده شاخص‌های
اینتربرونیکس مانند قند، وزن، توده بدنی، معیتی‌های بدن و
ضخامت کربن زیر پوستی در شرایط تجربی صورت
پذیرفت. ضخامت کربن زیر پوستی آزمودنی‌ها با استفاده
از کالیبر در سه نقطه سر بازو، شکم و فوک خاصره،
در سمت راست بدن در معادله عمومی جکسون و پولیاک
مختص مردان گرافشید (20). آن‌گاه با گرافشید
مقدار عدیدی محاسبه شده در معادله سیری، درصد جبری
بدن محاسبه رود (21، اندوزگری محیط‌های کمر و
نگ کردن مرحله شش مسئولیت مسئولیت سلامت
انجام گرفت (22). شاخص‌های جسمانی سپری بررسی،
مجددا پس از یک‌پاره دوره تمرین اندوزگری و ثبت شدند.
خونگیری پس از ۱۴ ساعت ناشتا در مرجع
پیش آزمون و در مرحله پس آزمون به دسترسی وارای
تأثیر اتلاف رأی ناشی از تمرین بر مقادیر شاخص‌های
خونی پس آزمون پس از ۸۸ ساعت بعد از آخرین جلسه
تمرین، در شرایط آزمایشگاهی، به مقدار ۵ سی و از

یافته‌ها

بنابر یافته‌های آزمودنی‌ها و ارزیابی‌های کیفیت

تغییرات سطوح سرمی لپتن (F:4/81، P=0/05) تجربی و

سال: ۱۳۹۰، شماره ۲/ نویسنده: ۲/ دی‌وام و علوم زیست حکمرانی
جدول 1: تغییرات شاخص‌های آنتروپومتریکی مورد بررسی، قبل و بعد از 12 هفته تمرين استقامتی کم شدت و پرشدت

<table>
<thead>
<tr>
<th>شاخص‌ها</th>
<th>کم شدت</th>
<th>پرشدته</th>
<th>پرشدته</th>
<th>پرشدته</th>
</tr>
</thead>
<tbody>
<tr>
<td>سینی (سال)</td>
<td>20/41±1/9</td>
<td>20/41±1/9</td>
<td>20/41±1/9</td>
<td>20/41±1/9</td>
</tr>
<tr>
<td>وزن (کیلوگرم)</td>
<td>97/83±2/7</td>
<td>96/42±2/7</td>
<td>95/42±2/7</td>
<td>94/42±2/7</td>
</tr>
<tr>
<td>نوته بدن (کیلوگرم بر متر مربع)</td>
<td>22/13±1/17</td>
<td>21/83±1/17</td>
<td>21/83±1/17</td>
<td>21/83±1/17</td>
</tr>
</tbody>
</table>

نتایج آزمون تی زوجی نشان داد تمرینات استقامتی کم شدت و شدید، تفاوتی معنی‌داری نداشتند. میزان داشته است که در گروه تمرينات استقامتی شديد علاوه بر کاهش معنی‌دار غلظت فیتنس (P=0/010)، استقامتی کم شدت علیرغم کاهش معنی‌دار سطح سرمی لیپین (P=0/020) و شاخص‌های آنتروپومتریکی نظیر وزن تغییر نمی‌کرد.
جدول ۲: نتایج آزمایش‌های خونی مورد بررسی، قبل و پس از ۱۲ هفته تمرين استقامتی گردش و برپشته

<table>
<thead>
<tr>
<th>متغیرها</th>
<th>منفی‌ترین بورد</th>
<th>گردش و برپشته</th>
<th>گردش</th>
<th>وپشته</th>
</tr>
</thead>
<tbody>
<tr>
<td>پس آزمون</td>
<td>۹/۱۳±۱/۶۲</td>
<td>۱/۳۱±۱/۴۴</td>
<td>۹/۶۱±۱/۶۴</td>
<td>۱/۷۲±۱/۳۶</td>
</tr>
<tr>
<td>شنیده</td>
<td>۶/۱۳±۱/۶۲</td>
<td>۱/۳۱±۱/۴۴</td>
<td>۹/۶۱±۱/۶۴</td>
<td>۱/۷۲±۱/۳۶</td>
</tr>
<tr>
<td>کم شدید</td>
<td>۶/۱۳±۱/۶۲</td>
<td>۱/۳۱±۱/۴۴</td>
<td>۹/۶۱±۱/۶۴</td>
<td>۱/۷۲±۱/۳۶</td>
</tr>
<tr>
<td>کم شدید</td>
<td>۶/۱۳±۱/۶۲</td>
<td>۱/۳۱±۱/۴۴</td>
<td>۹/۶۱±۱/۶۴</td>
<td>۱/۷۲±۱/۳۶</td>
</tr>
</tbody>
</table>

* آزمون ۲۰۱۱ (P<0.05) و کلیه آزمایش‌های آئوروبیومتریکی مورد بررسی (P<0.001) سطح میانگین هورمون رشد پس از افزایش میانگین (P<0.001) و کورتئزیول (P<0.001) نشان دهنده فعالیت است. در همراه بودن است: میزان کاهش میانگین دارد سطح تستوسترون سرم دیده شد (P<0.001) (جدول ۲ و ۲۳).

نیاز به افزایش آوراندیش می‌بایست بررسی شود. بین سطح اولیه این دوی اولیه خاصی توده دیدنی رابطه معنی‌دار برقرار بود (P=0.02, P=0.03). ضمن اینکه بین تغییرات غلظت این دوی اولیه و ون (P<0.05) و تغییرات خون (P<0.05) و شاخص توده به نسبت (P<0.05) درصد چربی بدن (P=0.06) و حمایت کمکی (P<0.05) و رابطه معنی‌دار وجود دارد.

بحث

تغییرات پزشکی حاضر نشان داد ۱۲ هفته تمرين
اهالی این امکان وجود دارند که عواملی دیگر علائم را بر تغییرات چاقی نیز تنشی مسطح لیپین بعد از ورزش تاثیر گذار باشد. انسولین می تواند یکی از این عوامل تاثیر گذار باشد.

این نتایج احتمالاً نشان می دهد که این انسولین ممکن است تأثیر گذار باشد که می تواند به همراه افزایش استرس و تنش کاهش لیپین را تولید کند. این مطالعه احتمالاً نشان می دهد که برای کاهش لیپین بهتر است که تشخیص و درمان استرس و تنش بروز شود.

در این مطالعه، انسولین نشان می‌دهد که به طور مستقیم با بهبود CRP و افزایش لیپین‌ها، کاهش استرس و تنش را تولید می‌کند. این نتایج می‌توانند بهبود صحت عمومی و بهبود لیپین‌ها را تولید کنند. این نتایج احتمالاً نشان می‌دهد که برای کاهش لیپین بهتر است که تشخیص و درمان استرس و تنش بروز شود.
کورترول تاثیر معنی‌دار داشته است (39). کورترول مهمترین گلوکوکرتیکوئید مرشحه از غده آدنال به واسطه افزایش گلوکوتونژی و غلظت گلوک خون، بنده را قادید می‌سازد در بر اساس تحقیقات، افزایش سطح هورمون رشد پس از تمرین با غلظت کورترول مرتبط است (40). به طوری که یک پژوهش های زیرکر گرترول به تمرین، افزایش در پاسخ هورمون رشد را در پی خواهد داشت (41). بنابراین، آزمون نیز زوجی با وجود افزایش 40 درصدی در سطح کورترول سم سپ از تمرین استقامتی شدید، در گروه تمرینی کم شد غلظت ویبراتوری نزدیک، تغییرات غلظت کورترول از حجم تمرین لایه می‌یابد (۴۲). به طوری که حداقل شدت تمرینی لازم و کافی جهت وقوع تغییر در غلظت کورترول در بالغین ۶۵ درصد اکسیژن حسی بیشتر به عنوان شدید است (۱۵). چرا که غلظت به نکته در شدت بالا با تحریک محور هیپوتالاموس- هیپوفزه- آدنال (HAP) (آدنال) افزایش مای مزیتی بدان افزایش ترشح کورترول و رهایی کورترول از پرتودیا حامل، افزایش غلظت کورترول را به همراه خواهد داشت (۴۲). نتایج پژوهش دالی و همکاران (۱۹۹۸) می‌گوید که عضوم غلظت در عملکرد آدنال در زیانتسها پس از انجام تمرینات کم شد (۴۳) با یافته‌های پژوهش حاضر همسو است. اح سا و همکاران (۲۰۰۷) مشاهده کردند اجرای یک ماه تمور ورزش‌هوازی در زنان غیرغذالی ضمین کاهش غلظت لنین، با افزایش معنی‌دار سطوح بالسمایی (۷). هورمون رشد و کورترول همراه بوده است (7). کورترول محور بیان زنی و ترشح لنین از سلول‌های چربی است (۸) و هورمون رشد ترشح لنین را ماهی می- کند (11). در این حالت، لنین به طور مستقیم با تاثیر بر سلول‌های آدنالکورتیکوئید بر ترشح کورترول نقش مهارتی دارد (۱۱). ضمن اینکه لنین با محور هیپوتالاموس- هیپوفزه- آدنال نیز بازخور داشته و با هورمون ترموپرک مرشحه از مغز قدامی غده هیپوفزه، در كنترول متابولیسم پروتئین‌ها، کربوهیدرات‌ها و ترکیب بدن نقش مرکزی دارد (۳۵). اگرچه ترشح ضرائی هورمون GHRH رشد نسبت مواد غذایی مهارت به یافتن آدنال در تنظیم یافته‌های عصبی رهایی هورمون رشد طی ورزش محصول می‌شود (۳۶). بهینه تربیت که مناسب بوده – آدرنالزیک با کاهش منجر به GHRH، تمرین مواد غذایی سطح و ترنش ترشح هورمون رشد می‌گردد (۷۷). در مقابل فعالیت‌های آدرنالزیک بنابراین، سطح مواد غذایی، رهایی هورمون رشد را ماهی می‌کند (۳۷). بنابراین، فعالیت به نسبت افزایش در شدت تمرین از طریق افزایش تون (۶)، آدرنالزیک هورمون با ماهی تون (۶)، آدرنالزیک، در افزایش معنی‌دار هورمون رشد موثر است (۷۷). بنابراین، تأثیر آزمون نیز زوجی شرکت در ۱۶ هفته تمرین استقامتی شدید با افزایش ۱۸ درصدی در سطح هورمون رشد سرم همراه به زنی در گروه تمرینی کم شد غلظت ویبراتوری دایر در سطح سرم هورمون رشد مشاهده نشد. شدت تمرین در میزان رهایی هورمون رشد تحقیق کلیدی ایفا می‌کند. نتایج پژوهش پروپاگال- روی متغیر را به ورود ارتباط خاصین پشیج ترشح هورمون رشد به ورزش و شدت تمرین در زنان و مردان جوان (۳۸) بدون مطلوب را تایید می‌کند. بنابراین می‌توان چنین استنباط کرد که جفت شدید تمرین و رهایی هورمون رشد با فعالیت آدرنالزیک سیستم عصبی مزکی بکی از عوامل موثر در توجه کننده حساسیت در وجود افزایش معنی‌دار هورمون رشد در گروه تمرینی شدید در مقابل عدم تغییر معنی‌دار هورمون رشد پس از ۱۶ هفته تمرینات، کم شد. در پژوهش حاضر با توجه کرامر و همکاران (۲۰۰۷) نشان دادند شرکت در منابع دوچرخه سواری/ دو فوق ماراتون (۲۰۰۰ کیلومتر) ضمن افزایش سطح هورمون رشد سرم، در افزایش غلظت سال سوم/ شماره ۲/ پاییز و زمستان ۱۳۹۰(۷۴) ورزش و علوم زیست حکیم
نتایج پژوهش هاکیزی و همکاران (2000) مبنا بر عدم تغییر معنی‌دار در سطح تستوسترون کل و آزاد خون پس از اجرای ۱۲ ماه ورزشی بر روی سطح تستوسترون با اصلاح مطابعه حاضر (بر اساس نمودار (۴۶)) با تابعیت مطابعه حاضر همغونی دارد. از این نگاهی که تغییر تستوسترون در بیضه‌ها در دوره یول توسط هورمون لیتینی (LH) تنظیم می‌شود (۳۹); عدم تغییر معنی‌دار در غلظت تستوسترون در پژوهش حاضر را با تغییر معنی‌دار حاضر در محور HPG توجیه کرد. با استفاده از تابعیت برخی مطالعات مبنا بر عدم تغییر معنی‌دار سطح خون پس از ورزش‌های طولانی تأثیر دو مارaton (۲۴). شاید بکیکی از عقل موثر در عدم تغییر معنی‌دار در سطح سرمی تستوسترون، عدم تغییر LH باشد.

نتletal گیری

فعالیت‌های استقامتی طولانی مدت در شدت‌های کم و زیاد در کاهش وزن و بهبود ترکیب دیده می‌شود. اگر چه هوش می‌شود که علیرغم افزایش معنی‌دار در سطح کورتیزول سرم، افزایش ناجی به مردان (۲/۷ در سطح سرمی تستوسترون به همراه داشت است. احتمالاً همین افزایش کورتیزول با تولید تستوسترون داخل کرده است و با تأثر افزایش سرطان‌های نهفته‌پزشکی‌ای که با طور غیرمستقیم با فطق محور تنظیم هیپوتالاموس- هیپفژر - غدد جنسی افزایش در تولید تستوسترون را کاهش داده است (HPG).

References

Effects of high and low intensity endurance training on levels of leptin, cortisol, testosterone, growth hormone, and insulin resistance index in sedentary obese men

Soori R¹, Rezaeian N¹, Salehian O¹

1. University of Tehran

Received: 04/02/2012 Revised: 21/04/2012 Accepted: 08/05/2012

Abstract

Introduction and purpose: Exercise and physical activity ameliorate obesity and related complications via effecting on hormones that regulate energy homeostasis and metabolism. This study examined the influence of low intensity versus high intensity endurance training on serum levels of leptin, cortisol, testosterone, Growth Hormone (GH) and insulin resistance index (HOMA-IR) in sedentary obese men.

Materials and Methods: 27 sedentary obese men (BMI=33.8±2.81 kg/m2, mean aged 21 years) randomly assigned to two training and one control groups. The participants were exposed to 16 weeks of low intensity (40-45% of heart rate reserve) and high intensity endurance training (80-85% of heart rate reserve), 50-60 minutes per session and 3 days per week. Serum levels of leptin, cortisol, testosterone, GH and HOMA-IR, and anthropometric indices were measured before and 48 hours after last training session. Statistical analysis was done by one way ANOVA, paired t-test and Pearson correlation, and P value<0.05 being considered significant.

Results: Low intensity endurance training resulted in significant decreases in serum levels of leptin (P=0.020) and anthropometric indices such as weight, body fat percent and BMI (P<0.05), and significant increases in testosterone of serum (P=0.047). In addition to significant decline in leptin concentration, HOMA-IR and most of anthropometric indices (P<0.05), high intensity endurance training resulted in significant augmentations in levels of GH and cortisol (P<0.05). Furthermore, there were significant correlations between changes in serum levels of leptin and alterations of most of anthropometric indices and body composition in both training groups (P<0.05).

Discussion and Conclusion: High intensity endurance training is more effective in the improvement of body composition and ameliorating metabolic hormonal profile than low intensity endurance training in obese men.

Key words: Endurance Training, Leptin, Cortisol, Growth Hormone, Obese Men

Correspondence:
Rahman Soori, Department of Physical Education and Exercise Sciences, University of Tehran, Tehran, Iran. Email: soori@ut.ac.ir