بررسی تأثیر ویژگی‌های هندسی حوضه‌ها در تشکیل مخروط‌افکن‌های دامنه جنوبی البرز در استان سمنان با استفاده از روش‌های همبستگی و تحلیل سلسله مراتبی

دکتر عیسی جوکار سرهنگی*، دانشیار گروه جغرافیا - دانشگاه مازندران
سیمیه فخرالدین، کارشناسی ارشد هیدروژئومرفولوژی - دانشگاه مازندران

چکیده

در مورد ذخیره‌فاضلگی مناطق خشک و نیمه خشک بیابان‌های ایران، مطالعات گسترده‌ای انجام شده است؛ اما در این بین مخروط‌افکن‌های به رغم دارا بودن پتانسیل‌های محیطی، به طور تخصصی کمتر مورد مطالعه قرار گرفته‌اند. در این تحقیق جهت بررسی تأثیر برخی ویژگی‌های هندسی آبخیز در تشکیل مخروط‌افکن‌های حوضه‌های جنوبی البرز و در استان سمنان با استفاده از روش‌های همبستگی و تحلیل سلسله مراتبی به پرس روش‌های میدانی و تهیه لایه‌ای اطلاعاتی از طریق نقشه‌ها و منابع موجود، تعداد 44 مخروط‌افکن از مخروط‌افکن‌های حوضه‌های حوضه‌های جنوبی البرز واقع در استان سمنان شناسایی و مرز هریک از این مخروط‌افکن و حوضه‌های آبی وابسته به آنها در محیط GIS تعیین و رقومی شدند. همچنین برای دقت‌بیشتر محیط نرم‌افزار Google Earth نیز استفاده شد. سپس از ویژگی‌های هندسی حوضه‌های مخروط‌افکن‌ها استخراج شدند. در مرحله بعد برای تعیین وزن عوامل و اولویت بندی آنها از فرآیند تحلیل سلسله مراتبی استفاده گردید. در این روش، عوامل مؤثر به صورت زوجی با یکدیگر مقایسه و ضریب وزنی عوامل محاسبه شد. بررسی‌های نشان می‌داد که عوامل ساحلت، طول حوضه، ارتفاع و ضریب شکل، ارتفاع، محیط، طول حوضه، تراکم زمین‌شن، ظرفیت آب‌های اصلی و طول حوضه به ترتیب بیشترین تأثیر را در ابعاد مخروط‌افکن‌ها دارند، برای تعیین درستی اولویت بندی مذکور از روش همبستگی استفاده شد. نتایج نشان داد که به ترتیب عوامل ساحلت، طول حوضه، ضریب شکل، طول آب‌های اصلی، ظرفیت آب‌های اصلی و محیط، طول حوضه به ترتیب بیشترین تأثیر را در ابعاد مخروط‌افکن‌ها دارند. برای تعیین درستی اولویت بندی مذکور از روش همبستگی استفاده شد. نتایج نشان داد که به ترتیب عوامل ساحلت، طول حوضه، ضریب شکل، طول آب‌های اصلی، ظرفیت آب‌های اصلی و محیط، طول حوضه به ترتیب بیشترین تأثیر را در ابعاد مخروط‌افکن‌ها دارند. برای تعیین درستی اولویت بندی مذکور از روش همبستگی استفاده شد. نتایج نشان داد که به ترتیب عوامل ساحلت، طول حوضه، ضریب شکل، طول آب‌های اصلی، ظرفیت آب‌های اصلی و محیط، طول حوضه به ترتیب بیشترین تأثیر را در ابعاد مخروط‌افکن‌ها دارند.

واژگان کلیدی: مخروط‌افکن‌های حوضه‌های آبی، البرز، تحلیل سلسله مراتبی، ضریب همبستگی.

* Email: e.jokar@umz.ac.ir
1- مقدمه


ویژگی‌های حوضه‌ها همچون خصوصیات هندسی، خاک، گیاه، پوشش گیاهی، زمین‌شناسی، آب‌شناسی، اقلیمی، بار، رسوبی و حیات خاوی‌ای از جمله منگرهای مؤثر بر مخروط‌فکه‌ها به شمار می‌روند. خصوصیات هندسی (بژ و دیگر) به حوضه‌های مخروط‌فکه‌ها، نشان دهنده حجم می‌شود که مشخص است که مقادیر آنها باید در حوضه به نسبت ثابت بوده و نشان دهنده وضع ظاهری شکل حوضه‌های است. (علی‌زاده، 1386). اسمارت، میکرو‌بیولوژی، شکل، شیب آب‌راه، اصلی، پستی و بلندی، شیب و جهت حوضه و تراکم رهگیری از مجهزی خصوصیات حوضه‌ها می‌شود. بنی چچ (1963) این اشکال اهمیت این ویژگی‌ها را در زمین‌ورفته اقلیمی نشان داده است. به دلیل ارتباط متقابل آنها بر بار روانه، بار رسوبی و در نتیجه نقش آنها در شکل و فرم مخروط‌فکه‌هایش (گروایی و بیضایی، 1391: 3). پارامترهای کیمی حوضه‌های آبی و مخروط‌فکه‌های وابسته به آنها به عنوان اطلاعات ارزشمند در مورد نو زمین‌ورفته و حتی در نتیجه ارتباطی پتانسیل لرزه‌های مناطق در انتخاب کارشناسی نیز مورد بررسی قرار دهند. (herrin et al. 2010).

(96) همچنین بررسی و شناخت ذیل و همه جانبه مخروط‌فکه‌ها، در برنامه‌ریزی‌های محیطی امری ضروری و گزینه‌بردار است، از سویی نشان می‌دهد که در مورد یکی از خصوصیات اصلی مخروط‌فکه‌ها، میلیون‌ها دارای خصوصیات مالی و جانی و جنگ‌های انسانی وارد می‌کنند (فیلد، 1991: 297). بنابراین نشان می‌دهد یکی از فرم‌های فشرده‌تر و به عنوان یکی از خصوصیات محیطی برای این ناحیه ارزیابی می‌شود. وجود اراضی مستحوش فعالیت کشاورزی در نزدیکی کلان شهر تهران، رونق و اهمیت خاصی را به عنوان فعالیت مستقر در این مخروط‌فکه‌های بخشیده که حذف و تبدیل آن به سبب رایح بیدیدی

1- Huggett
2- Blissenbach
مطالعات جغرافیایی مناطق خشک، دوره پنجم، شماره بیستم، تابستان ۱۳۹۴

شوری منابع آب و خاک می‌تواند برای اقتصاد ناحیه فاجعه‌بر و برای شهر تهران نیز تهیه کننده باشد (شایان و همکاران، ۱۳۹۰: ۱۰۴). به طور کلی مخروط‌افکنه‌ها در بسیاری از نقاط جهان دیده‌شده‌اند. شرایط مناسب، موقعیت خوب و برای استقرار سکونت‌گاه‌ها و مراکز استقرار سرمایه از دیگر دوییه پیشین از تاریخ تاکنون فراهم کرده‌اند. این مورد ویژه امنیتی در مورد منابع آب و خاک وارد مورد به کشور جنگ‌های اقتصاد ناحیه تهران و برای شهر تهران نیز تهدید کنند باشد (شایان و همکاران، ۱۳۹۰: ۵۴). به طور کلی مخروط‌افکنه‌ها در بسیاری از نقاط جهان دیده‌شده‌اند. شرایط مناسب، موقعیت خوب و برای استقرار سکونت‌گاه‌ها و مراکز استقرار سرمایه از دیگر دوییه پیشین از تاریخ تاکنون فراهم کرده‌اند. این مورد ویژه امنیتی در مورد منابع آب و خاک وارد مورد به کشور جنگ‌های اقتصاد ناحیه تهران و برای شهر تهران نیز تهدید کنند باشد (شایان و همکاران، ۱۳۹۰: ۵۴). به طور کلی مخروط‌افکنه‌ها در بسیاری از نقاط جهان دیده‌شده‌اند. شرایط مناسب، موقعیت خوب و برای استقرار سکونت‌گاه‌ها و مراکز استقرار سرمایه از دیگر دوییه پیشین از تاریخ تاکنون فراهم کرده‌اند. این مورد ویژه امنیتی در مورد منابع آب و خاک وارد مورد به کشور جنگ‌های اقتصاد ناحیه تهران و برای شهر تهران نیز تهدید کنند باشد (شایان و همکاران، ۱۳۹۰: ۵۴).

به طور کلی مخروط‌افکنه‌ها در بسیاری از نقاط جهان دیده‌شده‌اند. شرایط مناسب، موقعیت خوب و برای استقرار سکونت‌گاه‌ها و مراکز استقرار سرمایه از دیگر دوییه پیشین از تاریخ تاکنون فراهم کرده‌اند. این مورد ویژه امنیتی در مورد منابع آب و خاک وارد مورد به کشور جنگ‌های اقتصاد ناحیه تهران و برای شهر تهران نیز تهدید کنند باشد (شایان و همکاران، ۱۳۹۰: ۵۴).

به طور کلی مخروط‌افکنه‌ها در بسیاری از نقاط جهان دیده‌شده‌اند. شرایط مناسب، موقعیت خوب و برای استقرار سکونت‌گاه‌ها و مراکز استقرار سرمایه از دیگر دوییه پیشین از تاریخ تاکنون فراهم کرده‌اند. این مورد ویژه امنیتی در مورد منابع آب و خاک وارد مورد به کشور جنگ‌های اقتصاد ناحیه تهران و برای شهر تهران نیز تهدید کنند باشد (شایان و همکاران، ۱۳۹۰: ۵۴).

به طور کلی مخروط‌افکنه‌ها در بسیاری از نقاط جهان دیده‌شده‌اند. شرایط مناسب، موقعیت خوب و برای استقرار سکونت‌گاه‌ها و مراکز استقرار سرمایه از دیگر دوییه پیشین از تاریخ تاکنون فراهم کرده‌اند. این مورد ویژه امنیتی در مورد منابع آب و خاک وارد مورد به کشور جنگ‌های اقتصاد ناحیه تهران و برای شهر تهران نیز تهدید کنند باشد (شایان و همکاران، ۱۳۹۰: ۵۴).

به طور کلی مخروط‌افکنه‌ها در بسیاری از نقاط جهان دیده‌شده‌اند. شرایط مناسب، موقعیت خوب و برای استقرار سکونت‌گاه‌ها و مراکز استقرار سرمایه از دیگر دوییه پیشین از تاریخ تاکنون فراهم کرده‌اند. این مورد ویژه امنیتی در مورد منابع آب و خاک وارد مورد به کشور جنگ‌های اقتصاد ناحیه تهران و برای شهر تهران نیز تهدید کنند باشد (شایان و همکاران، ۱۳۹۰: ۵۴).

به طور کلی مخروط‌افکنه‌ها در بسیاری از نقاط جهان دیده‌شده‌اند. شرایط مناسب، موقعیت خوب و برای استقرار سکونت‌گاه‌ها و مراکز استقرار سرمایه از دیگر دوییه پیشین از تاریخ تاکنون فراهم کرده‌اند. این مورد ویژه امنیتی در مورد منابع آب و خاک وارد مورد به کشور جنگ‌های اقتصاد ناحیه تهران و برای شهر تهران نیز تهدید کنند باشد (شایان و همکاران، ۱۳۹۰: ۵۴).
بررسی تأثیر ویژگی‌های هندسی حوضه‌ها در تشکیل مخروط‌افکنه‌های دامنه جنوبی البرز

منطقه مورد مطالعه متشکل از تعداد زیادی مخروط‌افکنه مجاور می‌باشد که تعداد 44 مخروط‌افکنه قابل شناسایی در دامنه‌های جنوبی البرز به همزمان 44 حوضه آبی آن‌ها انتخاب شده است. مشخصات کلی این مخروط‌ها و حوضه‌های آبی آن‌ها در جدول 1 انتخاب شده است. حداکثر و حداقل ارتفاع محدوده مورد مطالعه به ترتیب 4024 و 863 متر می‌باشد (جدول 1).

جدول شماره 1: ویژگی‌های هندسی حوضه‌های آبی و مخروط‌افکنه‌ها

<table>
<thead>
<tr>
<th>کد</th>
<th>مساحت مخروط (Km²)</th>
<th>مساحت حوضه (Km²)</th>
<th>مساحت حوضه (درصد)</th>
<th>طول حوضه (Km)</th>
<th>طول کل ارتفاع (Km)</th>
<th>طول ارتفاع اصلی (Km)</th>
<th>طول ارتفاع اصلی (درصد)</th>
<th>شیب ارتفاع اصلی (درصد)</th>
<th>تراکم زه کشی (Km/km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6/09</td>
<td>6/09</td>
<td>1</td>
<td>183/1</td>
<td>184/4</td>
<td>16/6</td>
<td>7/7</td>
<td>15/6</td>
<td>4/04</td>
</tr>
<tr>
<td>2</td>
<td>9/56</td>
<td>15/6</td>
<td>2</td>
<td>183/1</td>
<td>184/4</td>
<td>16/6</td>
<td>7/7</td>
<td>15/6</td>
<td>4/04</td>
</tr>
<tr>
<td>3</td>
<td>16/3</td>
<td>4/01</td>
<td>3</td>
<td>183/1</td>
<td>184/4</td>
<td>16/6</td>
<td>7/7</td>
<td>15/6</td>
<td>4/04</td>
</tr>
<tr>
<td>4</td>
<td>10/2</td>
<td>8/36</td>
<td>4</td>
<td>183/1</td>
<td>184/4</td>
<td>16/6</td>
<td>7/7</td>
<td>15/6</td>
<td>4/04</td>
</tr>
<tr>
<td>5</td>
<td>16/3</td>
<td>4/01</td>
<td>5</td>
<td>183/1</td>
<td>184/4</td>
<td>16/6</td>
<td>7/7</td>
<td>15/6</td>
<td>4/04</td>
</tr>
<tr>
<td>6</td>
<td>7/49</td>
<td>4/09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>شماره</td>
<td>مطالعات جغرافیایی مناطق خشک. دوره بنجم. شماره بیستم. تاسیستان 1394</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>74/1</td>
<td>218/7</td>
<td>1-8/4</td>
<td>187/5</td>
<td>156/7</td>
<td>33/1</td>
<td>29/9</td>
<td>31/7</td>
<td>29/6</td>
</tr>
<tr>
<td>8</td>
<td>31/7</td>
<td>10/1</td>
<td>16/9</td>
<td>110/7</td>
<td>185/7</td>
<td>6/3</td>
<td>1/9</td>
<td>6/3</td>
<td>3/10</td>
</tr>
<tr>
<td>9</td>
<td>53/7</td>
<td>40/8</td>
<td>105/8</td>
<td>153/6</td>
<td>52/6</td>
<td>17/10</td>
<td>0/3</td>
<td>0/6</td>
<td>0/3</td>
</tr>
<tr>
<td>10</td>
<td>32/7</td>
<td>32/6</td>
<td>16/3</td>
<td>110/3</td>
<td>10/5</td>
<td>12/1</td>
<td>0/7</td>
<td>0/12</td>
<td>0/7</td>
</tr>
<tr>
<td>11</td>
<td>12/3</td>
<td>33/1</td>
<td>12/6</td>
<td>14/9</td>
<td>12/0</td>
<td>74/8</td>
<td>1/1</td>
<td>1/10</td>
<td>1/3</td>
</tr>
<tr>
<td>12</td>
<td>0/1</td>
<td>12/8</td>
<td>98/4</td>
<td>24/1</td>
<td>33/6</td>
<td>32/9</td>
<td>10/4</td>
<td>3/2</td>
<td>3/4</td>
</tr>
<tr>
<td>13</td>
<td>0/4</td>
<td>55/0</td>
<td>22/10</td>
<td>157/2</td>
<td>82/3</td>
<td>3/14</td>
<td>19/1</td>
<td>2/7</td>
<td>0/3</td>
</tr>
<tr>
<td>14</td>
<td>37/0</td>
<td>96/8</td>
<td>32/5</td>
<td>66/8</td>
<td>18/0</td>
<td>3/3</td>
<td>3/0</td>
<td>0/3</td>
<td>0/6</td>
</tr>
<tr>
<td>15</td>
<td>5/8</td>
<td>12/4</td>
<td>112/1</td>
<td>10/6</td>
<td>3/9</td>
<td>9/5</td>
<td>5/3</td>
<td>1/16</td>
<td>0/3</td>
</tr>
<tr>
<td>16</td>
<td>0/8</td>
<td>12/3</td>
<td>117/0</td>
<td>11/47</td>
<td>4/9</td>
<td>3/0</td>
<td>3/3</td>
<td>0/9</td>
<td>0/4</td>
</tr>
<tr>
<td>17</td>
<td>0/8</td>
<td>3/5</td>
<td>177/7</td>
<td>12/04</td>
<td>1/9</td>
<td>0/3</td>
<td>0/7</td>
<td>0/17</td>
<td>0/5</td>
</tr>
<tr>
<td>18</td>
<td>1/8</td>
<td>10/8</td>
<td>195/8</td>
<td>24/2</td>
<td>19/18</td>
<td>1/9</td>
<td>0/2</td>
<td>0/7</td>
<td>0/9</td>
</tr>
<tr>
<td>19</td>
<td>3/9</td>
<td>18/0</td>
<td>18/0</td>
<td>17/33</td>
<td>9/4</td>
<td>6/1</td>
<td>0/4</td>
<td>0/13</td>
<td>0/74</td>
</tr>
<tr>
<td>20</td>
<td>4/0</td>
<td>32/2</td>
<td>32/1</td>
<td>29/9</td>
<td>12/8</td>
<td>3/13</td>
<td>1/25</td>
<td>0/9</td>
<td>0/74</td>
</tr>
<tr>
<td>21</td>
<td>3/2</td>
<td>15/0</td>
<td>155/6</td>
<td>10/5</td>
<td>8/5</td>
<td>15/2</td>
<td>0/1</td>
<td>0/10</td>
<td>0/83</td>
</tr>
<tr>
<td>22</td>
<td>3/1</td>
<td>35/0</td>
<td>35/1</td>
<td>155/8</td>
<td>19/2</td>
<td>19/1</td>
<td>9/2</td>
<td>3/25</td>
<td>0/76</td>
</tr>
<tr>
<td>23</td>
<td>15/0</td>
<td>11/1</td>
<td>111/0</td>
<td>22/3</td>
<td>27/3</td>
<td>22/8</td>
<td>3/5</td>
<td>0/27</td>
<td>0/21</td>
</tr>
<tr>
<td>24</td>
<td>3/3</td>
<td>7/1</td>
<td>17/3</td>
<td>144/7</td>
<td>11/2</td>
<td>1/9</td>
<td>1/10</td>
<td>0/17</td>
<td>0/55</td>
</tr>
<tr>
<td>25</td>
<td>0/1</td>
<td>30/5</td>
<td>49/8</td>
<td>18/3</td>
<td>11/2</td>
<td>1/1</td>
<td>1/5</td>
<td>0/7</td>
<td>0/27</td>
</tr>
<tr>
<td>26</td>
<td>0/8</td>
<td>19/7</td>
<td>17/14</td>
<td>22/12</td>
<td>8/7</td>
<td>15/3</td>
<td>1/08</td>
<td>3/8</td>
<td>0/5</td>
</tr>
<tr>
<td>27</td>
<td>0/1</td>
<td>33/7</td>
<td>35/4</td>
<td>184/4</td>
<td>22/30</td>
<td>8/4</td>
<td>3/15</td>
<td>1/7</td>
<td>3/13</td>
</tr>
<tr>
<td>28</td>
<td>0/3</td>
<td>23/4</td>
<td>25/4</td>
<td>18/3</td>
<td>20/2</td>
<td>3/4</td>
<td>2/4</td>
<td>0/13</td>
<td>0/96</td>
</tr>
<tr>
<td>29</td>
<td>0/8</td>
<td>18/7</td>
<td>17/6</td>
<td>18/8</td>
<td>14/8</td>
<td>11/9</td>
<td>18/4</td>
<td>1/25</td>
<td>0/5</td>
</tr>
<tr>
<td>30</td>
<td>12/0</td>
<td>32/3</td>
<td>32/0</td>
<td>199/5</td>
<td>12/3</td>
<td>1/3</td>
<td>1/2</td>
<td>0/58</td>
<td>0/16</td>
</tr>
<tr>
<td>31</td>
<td>12/37</td>
<td>12/9</td>
<td>141/1</td>
<td>11/27</td>
<td>51/8</td>
<td>11/37</td>
<td>0/3</td>
<td>0/19</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3/1</td>
<td>5/7</td>
<td>11/6</td>
<td>18/5</td>
<td>22/4</td>
<td>3/5</td>
<td>3/18</td>
<td>0/5</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>0/2</td>
<td>9/9</td>
<td>18/1</td>
<td>19/12</td>
<td>3/5</td>
<td>2/3</td>
<td>2/5</td>
<td>0/15</td>
<td>0/66</td>
</tr>
<tr>
<td>34</td>
<td>0/8</td>
<td>19/5</td>
<td>19/5</td>
<td>18/8</td>
<td>11/19</td>
<td>5/2</td>
<td>1/6</td>
<td>0/27</td>
<td>0/50</td>
</tr>
<tr>
<td>35</td>
<td>0/0</td>
<td>52/9</td>
<td>89/1</td>
<td>230/0</td>
<td>18/2</td>
<td>13/9</td>
<td>23/10</td>
<td>0/1</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0/4</td>
<td>39/7</td>
<td>39/8</td>
<td>18/8</td>
<td>32/4</td>
<td>11/11</td>
<td>0/18</td>
<td>0/91</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1/0</td>
<td>2/0</td>
<td>20/8</td>
<td>39/0</td>
<td>3/24</td>
<td>0/8</td>
<td>0/13</td>
<td>0/6</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>1/1</td>
<td>31/9</td>
<td>32/1</td>
<td>27/8</td>
<td>41/0</td>
<td>12/4</td>
<td>3/10</td>
<td>0/1</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>1/6</td>
<td>19/5</td>
<td>19/5</td>
<td>18/8</td>
<td>21/9</td>
<td>5/14</td>
<td>0/19</td>
<td>0/15</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1/1</td>
<td>18/6</td>
<td>19/1</td>
<td>230/1</td>
<td>18/2</td>
<td>13/9</td>
<td>23/10</td>
<td>0/1</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>2/1</td>
<td>2/1</td>
<td>0/12</td>
<td>19/0</td>
<td>33/6</td>
<td>3/3</td>
<td>0/8</td>
<td>0/13</td>
<td>0/6</td>
</tr>
<tr>
<td>42</td>
<td>1/5</td>
<td>12/9</td>
<td>21/1</td>
<td>30/1</td>
<td>18/4</td>
<td>32/3</td>
<td>0/2</td>
<td>0/2</td>
<td>0/8</td>
</tr>
<tr>
<td>43</td>
<td>14/1</td>
<td>20/2</td>
<td>237/3</td>
<td>32/2</td>
<td>3/0</td>
<td>3/18</td>
<td>0/1</td>
<td>0/18</td>
<td></td>
</tr>
</tbody>
</table>
بررسی تأثیر ویژگی‌های هندسی حوضه‌ها در تشکیل مخروطافکن‌های دامنه جنوبی البرز

۲- مواد و روش‌ها

برای انجام این تحقیق، ابتدا منطقه‌ای که دارای بیشترین مخروطافکن‌های هندسی حوضه‌ها در استان سمنان بود، انتخاب گردید. محدوده مخروطافکن‌ها با استفاده از عکس‌های هوایی و توبوگرافی و همچنین محیط نرم‌افزاری Google Earth و نرم‌افزار ArcGIS (ArcGis و Arc Hydro) تشکیل می‌گردد. برای تهیه اطلاعات مورد نیاز از حوضه‌های آبی، نرم‌افزارهای GIS و سیس این نقشه‌ها زمین مرکزی و ارتفاعی شدند. پس از تعیین محدوده مورد مطالعه مسکن شهر وارد محیط نرم‌افزار GIS شد. سپس این نقشه‌ها زمین مرکزی و ارتفاعی شدند. پس از DEM و Google Earth اطلاعات مورد نیاز حوضه‌ها که جزو مدل‌های چند عاملی تصمیم‌گیری است، استفاده شد. مقایسه زوجی عوامل انجام و ضریب وزنی هر یک از متغیرها با کاربردهای آن مدل محاسبه گردیده است.

الف- فرآیند تحلیل سلسله مراتبی

فرآیند تحلیل سلسله مراتبی بر پایه تصمیم‌گیری چند‌قابل‌توجه است که توسط فرآیند عرفانی اصل به تام توماس Al ساخته‌شده در دهه ۱۹۸۰ بیشتر به ویرایش و دیگران (۱۳۸۸، ۸۵) در این مدل مسیر به پایین از طریق تجزیه آن عنصر جزئی و سلسله مراتبی در ارتباط به هدف مسأله به شکل ساده‌تری در می‌آید (زبیدست، ۱۳۸۰، ۱۵).

۱- اصل ترسیم درخت سلسله مراتبی (تقسیم مسأله به بخش‌های کوچک‌تر)

۲- اصل تدوین و تعویض اولویت‌ها (مقایسه زوجی بین میزان‌های مختلف و ارجحیت یک معیار بر معیار دیگر)

۳- اصل سازگاری منطقی قضاوت‌ها (برقراری روابط بین اجزای به صورتی که با هم هماهنگ باشند) (BANTAYAN & BISHOP, 1998: 38)

در این روش ابتدا به منظور تعیین ارجحیت عوامل مختلف و تبدیل آنها به مقادیر کمی از قضاوت‌های شفاهی (نظر کارشناسی) استفاده می‌شود به طوری که تصمیم‌گیری ارجحیت یک عامل را نسبت به علی دیگر به صورت (جدول ۲) در نظر گرفته و این قضاوت‌ها را به مقادیری کمی بین 1 تا 9 تبدیل می‌نماید (قدمی‌یوزف، ۱۳۷۹). ویا است که محدوده اعداد کمی شده صرفاً براساس نظر کارشناسی بوته و متخصص مرکب‌های می‌تواند محدوده اعداد کمی را به صورت تجربی و با بررسی کارهای مشابه تعیین نماید که در اینجا مقادیر کمی 1 الی 9 در نظر گرفته شده است.
جدول شماره ۲: مقادیر ترجیحات و قضاوت‌های کارشناسی برای مقایسه زوجی

<table>
<thead>
<tr>
<th>مقدار عددي</th>
<th>ترجیحات (قضاوت شفاهی)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۹</td>
<td>کاملاً مهور با کاملاً مطابق تر</td>
</tr>
<tr>
<td>۷</td>
<td>اهمیت با مطابقت خیلی قوی</td>
</tr>
<tr>
<td>۵</td>
<td>اهمیت با مطابقت قوی</td>
</tr>
<tr>
<td>۳</td>
<td>کمی مطابق با کمی مهور</td>
</tr>
<tr>
<td>۱</td>
<td>اهمیت با مطابقت بسیار قوی</td>
</tr>
<tr>
<td></td>
<td>اولویت‌های بین فاصله ۱، ۴ و ۶ و ۸</td>
</tr>
</tbody>
</table>

ب - روش همبستگی

در این تحقیق برای تعیین درستی وزن‌دهی به هر عامل و به منظور انجام مقایسه، از روش همبستگی استفاده شده است. ضریب همبستگی اバリه‌ای آماری، برای تعیین نوع و درجه رابطه یک متغیر کمی با متغیر کمی دیگر است. این روش یکی از میانه‌های مورد استفاده در تعیین همبستگی دو متغیر است. ضریب همبستگی شدت رابطه و همچنین نوع رابطه (مستقيم یا معکوس) را نشان می‌دهد. این ضریب بین ۱ تا ۱- است و در صورت عدم وجود رابطه بین دو متغیر، برابر صفر است.

بحث و نتایج

روابط بین مخروط‌افکنه‌ها و ویژگی‌های هندسی آبخیز مورد توجه در مطالعات مربوط به مخروط‌افکنه‌ها مورد توجه می‌باشد. یکی از اصلی‌ترین توجه به موضوع این است که ویژگی‌های هندسی حوضه‌ها در تعیین ابعاد مخروط‌افکنه‌ها و تغییر آن‌ها نقش بسیار مهمی را ایفا می‌کند.

برای بررسی نقش عوامل مؤثر در ابعاد مخروط‌افکنه‌های منطقه‌های مورد مطالعه، از فرآیند تحلیل سلسله مراتبی و روش همبستگی استفاده شده است. به منظور تعیین ارجحیت عوامل مختلف و تبدیل آنها به مقادیر کمی از قضاوت‌های شفاهی (نظر کارشناسی) بهره گرفته شد. جهت محاسبه وزن با نظریه‌های در ابعاد تحلیل مخروط‌افکنه‌ها و تغییر وزن هر یک از عواملی ده‌گانه ماتریس ۱۰۰۱ به صورت جدول ۳ تعریف گردید. به عبارتی با مقایسه دو به دو عنصر ماتریس مربوط به منطقه‌های آبادان و همچنین نظر کارشناسان از طریق پرسشنامه‌ها به دست آمد. این مقایسه به صورت مشخصه‌های مؤثر در تشکیل مخروط‌افکنه‌ها انجام داده شد و نتایج آن‌ها با استفاده از نرم‌افزار Expert choice و استانداردهای این نرم‌افزار به شیب در وزن هر یک از عوامل محاسبه و براساس این وزن، عوامل اولویت‌بندی شدند. نتایج در جدول ۳ ارائه شده است.
بررسی تأثیر ویژگی‌های هندسی حوضه‌ها در تشکیل مخروط‌افکنه‌های دامنه جنوبی البرز

جدول شماره (3) وزن هریک از عوامل و اولویت بندی آن‌ها در خروجی نرم‌افزار

Compare the relative preference with respect to: GOAL

<table>
<thead>
<tr>
<th></th>
<th>area</th>
<th>slope</th>
<th>form r</th>
<th>eleva</th>
<th>preme</th>
<th>length</th>
<th>drainage</th>
<th>length</th>
<th>slope</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td>area</td>
<td>3.0</td>
<td>4.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>7.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>slope</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>5.0</td>
<td>6.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>form r</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>4.0</td>
<td>4.0</td>
<td>5.0</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>eleva</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>preme</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>length of basin</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>drainage</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>length total stream</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slope main stream</td>
<td></td>
</tr>
<tr>
<td>length main stream</td>
<td></td>
</tr>
</tbody>
</table>

Inconsistency = 0.04
with 0 missing judgments.

نتایج حاصل از بررسی روابط بین مساحت مخروط‌افکنه‌های دامنه جنوبی البرز در استان سمنان با ویژگی‌های هندسی حوضه‌های آبی این منطقه نشان می‌دهد که وزن معیارهای 10 گانه مساحت، شیب، ضریب شکل، ارتفاع، محیط، طول حوضه، تراکم زهکشی، طول آلیاژ اصلی و طول آلیاژ اصلی به ترتیب 0.337/0، 0.190/0، 0.134/0، 0.091/0، 0.075/0، 0.055/0، 0.043/0، 0.032/0، 0.024/0 و 0.018/0 است. بنابراین نتیجه گرفته می‌شود که هر یک از این عوامل با ضرایب ذکر 0.337/0، 0.190/0، 0.134/0، 0.091/0، 0.075/0، 0.055/0، 0.043/0، 0.032/0، 0.024/0 و 0.018/0 در تشکیل مخروط‌افکنه‌های منطقه مورد مطالعه دارای اهمیت حضوری آبی است. این امر نشان می‌دهد که در این منطقه مساحت حوضه و ضریب شکل مانند دو عامل مهم در تشکیل مخروط‌افکنه‌های منطقه مورد مطالعه دارای اهمیت بوده و همچنین در این منطقه مساحت حوضه، ضریب شکل و مساحت آلیاژ اصلی به ترتیب 0.337/0، 0.190/0 و 0.018/0 از مهم‌ترین عوامل در تشکیل مخروط‌افکنه‌های منطقه مورد مطالعه به‌شمار می‌روند.
مطالعات جغرافیایی مناطق خشک، دوره پنجم، شماره بیستم، تاسیستان 1394

و مخروطات فکهی دانه شمایل میشو داغ، عابدی، دانشگاه علوم طبیعی و همکار (1385) با بررسی نقش عوامل مؤثر در گسترش و تکامل مخروطات فکهی ارتفاعات در دیزان داغی و همچنین گرایی و همکار (1391) با تحلیل ارتباط کمی و نسبی های مورفولوژیک حوضه و مخروطات فکهی آنها در ایران مرکزی در این زمینه به نتیجه مشابهی دست یافتند.

جدول شماره (3) روابط همبستگی بین ویژگی‌های هندسی حوضه‌های آب و ابعاد مخروطات فکهی

<table>
<thead>
<tr>
<th></th>
<th>Area</th>
<th>Area basin</th>
<th>Perimeter</th>
<th>Height</th>
<th>Slope</th>
<th>Length of basin</th>
<th>Length of stream</th>
<th>Length main stream</th>
<th>Drainage</th>
<th>Form</th>
<th>Form stream</th>
<th>Slope main stream</th>
<th>Drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Correlation Sig. (2-tailed)</td>
<td>1.000</td>
<td>0.973</td>
<td>0.927</td>
<td>0.465</td>
<td>0.197</td>
<td>0.891</td>
<td>0.935</td>
<td>0.913</td>
<td>-0.176</td>
<td>-0.296</td>
<td>0.061</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area basin Correlation Sig. (2-tailed)</td>
<td>0.969</td>
<td>1.000</td>
<td>0.933</td>
<td>0.394</td>
<td>0.106</td>
<td>0.902</td>
<td>0.970</td>
<td>0.922</td>
<td>-0.141</td>
<td>-0.280</td>
<td>0.047</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perimeter Correlation Sig. (2-tailed)</td>
<td>0.927</td>
<td>0.933</td>
<td>1.000</td>
<td>0.512</td>
<td>0.189</td>
<td>0.982</td>
<td>0.913</td>
<td>0.985</td>
<td>-0.076</td>
<td>-0.379</td>
<td>0.057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height Correlation Sig. (2-tailed)</td>
<td>0.465</td>
<td>0.394</td>
<td>0.512</td>
<td>1.000</td>
<td>0.718</td>
<td>0.541</td>
<td>0.328</td>
<td>0.528</td>
<td>-0.079</td>
<td>-0.311</td>
<td>0.227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>slope Correlation Sig. (2-tailed)</td>
<td>0.197</td>
<td>0.106</td>
<td>0.189</td>
<td>0.712</td>
<td>1.000</td>
<td>0.237</td>
<td>0.041</td>
<td>0.227</td>
<td>0.059</td>
<td>0.171</td>
<td>0.175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of basin Correlation Sig. (2-tailed)</td>
<td>0.891</td>
<td>0.902</td>
<td>0.982</td>
<td>0.541</td>
<td>0.237</td>
<td>1.000</td>
<td>0.882</td>
<td>0.991</td>
<td>0.035</td>
<td>0.425</td>
<td>0.039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length total stream Correlation Sig. (2-tailed)</td>
<td>0.935</td>
<td>0.970</td>
<td>0.913</td>
<td>0.328</td>
<td>0.041</td>
<td>0.882</td>
<td>1.000</td>
<td>0.902</td>
<td>-0.137</td>
<td>-0.284</td>
<td>0.187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>length main stream Correlation Sig. (2-tailed)</td>
<td>0.913</td>
<td>0.922</td>
<td>0.985</td>
<td>0.528</td>
<td>0.227</td>
<td>0.991</td>
<td>0.902</td>
<td>1.000</td>
<td>-0.009</td>
<td>-0.423</td>
<td>0.048</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Form Correlation Sig. (2-tailed)</td>
<td>0.176</td>
<td>-0.141</td>
<td>-0.076</td>
<td>-0.079</td>
<td>0.059</td>
<td>0.035</td>
<td>-0.137</td>
<td>-0.009</td>
<td>1.000</td>
<td>-0.212</td>
<td>0.047</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope main stream Correlation Sig. (2-tailed)</td>
<td>0.253</td>
<td>0.361</td>
<td>0.625</td>
<td>0.611</td>
<td>0.706</td>
<td>0.820</td>
<td>0.375</td>
<td>0.954</td>
<td>-0.166</td>
<td>0.166</td>
<td>0.761</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drainage Correlation Sig. (2-tailed)</td>
<td>0.061</td>
<td>-0.047</td>
<td>-0.057</td>
<td>-0.227</td>
<td>-0.175</td>
<td>-0.039</td>
<td>-0.187</td>
<td>-0.048</td>
<td>0.047</td>
<td>0.057</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
بررسی تأثیر ویژگی‌های هندسی حوضه‌ها در تشکیل مخروط‌فناک‌های دامنه جنوبی البرز:

نتیجه‌گیری

استفاده از ویژگی‌های زمین‌پردازشی در فاصله‌های هندسی حوضه‌ها در تشکیل مخروط‌فناک‌های جنوب البرز اقدام شده است. در این راستا به منظور اولویت بندی عوامل مؤثر از روش‌های همبستگی و تحلیل سلسله مراتبی استفاده شده است.

بر اساس کاربرد روش آماری ویژگی‌های جغرافیایی حوضه در تشکیل مخروط‌فناک‌ها اهمیت زیادی دارند. در این بحث به بررسی تأثیر برخی ویژگی‌های هندسی آبخیزهای جنوب البرز اشاره می‌شود. مساحت حوضه، شیب حوضه و ضریب شکل حوضه بیشترین و طول کل آبراهه، شیب آبراهه اصلی و ضریب شکل آبراهه اصلی کمترین تأثیر را در تشکیل مخروط‌فناک‌های دامنه جنوبی البرز داشتند.

نتیجه‌گیری‌ها حاصل از مقایسه این دو روش نشان می‌دهد که به جز تأثیر مساحت حوضه، سایر ویژگی‌های جغرافیایی حوضه دارای اثرات چندانی در تشکیل مخروط‌فناک‌ها ندارند. به این ترتیب، بزرگی حوضه‌ها در تشکیل و گسترش مخروط‌فناک‌ها تعیین کننده است.

پایان نهایی

در نهایت ضروری است که این عارضه‌های جغرافیایی در مطالعه و پژوهش‌های پیوسته مورد بررسی قرار گیرند.

منابع

1. اصغری مقدم، محمدرضا (1386). تأثیر فرازگیری ارتفاعات و فعالیت گسل‌های رودی در تشکیل مخروط‌فناک‌های دامنه جنوبی البرز. مجله جغرافیایی، شماره 23، صص 19-40.
2. امیراحمدی، ابوالقاسم، ثقفی، مهدی، رضوی، مثابه، مهدی (1386). تحلیل و طبقه‌بندی شکل‌های کوهی در طبیعت. مجله جغرافیایی، شماره 24، صص 106-121.
3. بیرامی، سعید، همیرخ، اکبر، (1390). تاثیر ویژگی‌های زمین‌پردازشی جغرافیایی دامنه شمیالی گردنه‌های البرز. مجله جغرافیایی، شماره 25، صص 98-110.
4. خریدار، مهدی، داوودی، محمد (1387). تأثیر ویژگی‌های زمین‌پردازشی جغرافیایی در تشکیل مخروط‌فناک‌های جنوب البرز. مجله جغرافیایی، شماره 26، صص 32-43.
5. بدل رضا، اصغری مقدم (1387). تأثیر ویژگی‌های زمین‌پردازشی جغرافیایی در تشکیل مخروط‌فناک‌های جنوب البرز. مجله جغرافیایی، شماره 27، صص 50-60.
روستایی، شهرام، زرین، مصطفی، زرینی، رضوانی (1388). نقش فعالیت‌های تکتونیکی در شکل‌گیری و تکامل مخروط‌افکنه‌های منطقه شمیرانوس جنوبی آلاداغ. مجله جغرافیا و توسعه، شماره 13، صص 78-84.

7. زبردست، اسفندیار (1380). کاربرد فرایند تحلیل سلسله مراتبی در برنامه‌ریزی شهری و منطقه‌ای. نشریه هنرهای زیبا، دانشگاه تهران، شماره 10، صص 21-12.

8. شایان، سید حسین، رجبی، مصطفی، رجبی، محمد، طریقی، طاهر (1384). بررسی نقش عوامل مؤثر در گسترش و تکامل مخروط‌افکنه‌های بالاتر در دهه‌های اخیر، پژوهش‌های جغرافیایی، شماره 55، صص 89-73.


10. عابدینی، جواد (1385). بررسی نقش عوامل مؤثر در گسترش و تکامل مخروط‌افکنه‌های بالاتر در دهه‌های اخیر، پژوهش‌های ژئومرفولوژیکی، شماره 65، صص 92-73.

11. بانتیانی، سیاوش، مظلومی، مصطفی، آقازاده، حسین (1394). ارتباط ویژگی‌های مورفولوژی حوضه‌های شرقی و مخروط‌افکنه‌های آنها در ایران مرکزی به‌کمک متروک‌فناوری کمی، شماره 2، صص 1-12.

12. مقصودی، مهران، صدیقی، حسین، سیاوشی، مهدی، ابراهیمی، مهران (1387). بررسی نقش عوامل مؤثر در تحول مخروط‌افکنه‌های شرقی در منطقه جاجرود و حاجرود، پژوهش‌های ژئومرفولوژیکی، شماره 65، صص 92-73.

13. بانتیانی، سیاوش، مظلومی، مصطفی، آقازاده، حسین (1394). ارتباط ویژگی‌های مورفولوژی حوضه‌های شرقی و مخروط‌افکنه‌های آنها در ایران مرکزی به‌کمک متروک‌فناوری کمی، شماره 2، صص 1-12.

14. مقصودی، مهران، صدیقی، حسین، سیاوشی، مهدی، ابراهیمی، مهران (1387). بررسی نقش عوامل مؤثر در تحول مخروط‌افکنه‌های شرقی در منطقه جاجرود و حاجرود، پژوهش‌های ژئومرفولوژیکی، شماره 65، صص 92-73.

15. بانتیانی، سیاوش، مظلومی، مصطفی، آقازاده، حسین (1394). ارتباط ویژگی‌های مورفولوژی حوضه‌های شرقی و مخروط‌افکنه‌های آنها در ایران مرکزی به‌کمک متروک‌فناوری کمی، شماره 2، صص 1-12.

16. بانتیانی، سیاوش، مظلومی، مصطفی، آقازاده، حسین (1394). ارتباط ویژگی‌های مورفولوژی حوضه‌های شرقی و مخروط‌افکنه‌های آنها در ایران مرکزی به‌کمک متروک‌فناوری کمی، شماره 2، صص 1-12.